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Abstract Motivated by fundamental problems in chemistry and biology we study
cluster graphs arising from a set of initial states S ⊆ Z

n+ and a set of transitions/reac-
tions M ⊆ Z

n+ × Z
n+. The clusters are formed out of states that can be mutually

transformed into each other by a sequence of reversible transitions. We provide a
solution method from computational commutative algebra that allows for deciding
whether two given states belong to the same cluster as well as for the reconstruction
of the full cluster graph. Using the cluster graph approach we provide solutions to
two fundamental questions: (1) Deciding whether two states are connected, e.g., if
the initial state can be turned into the final state by a sequence of transition and (2)
listing concisely all reactions processes that can accomplish that. As a computational
example, we apply the framework to the permanganate/oxalic acid reaction.
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1 Introduction

The reconstruction of all biochemical reaction networks composed of a given finite
set of reactions/transitions that explain a given overall reaction from an initial state to
some final state is one of the fundamental problems in biology and chemistry alike.
The extraction of this decomposition is essential and has a wide range of applications
from the design of large-scale reactors in process engineering where the presence of
unexpected side products can disrupt the reaction process to the derivation of rate laws
in physical chemistry.

One initial subproblem to be solved is to decide whether there exists a reaction
network at all that explains the given overall reaction. For example, it has been settled
only recently in [9], that if no additional catalyst is available, the 19 species postu-
lated in [13] do not suffice to explain the permanganate/oxalic acid reaction. So far,
automatic tools to reconstruct the reaction networks are rare. Even the very promising
recent approach using integer programming [12] suffered from ad-hoc assumptions.
Apart from that, there have been considerable advances in the study of biochemical
reaction networks using methods from discrete mathematics and computer algebra
which are not directly related to our work although they use similar methods (see e.g.,
[7], [15], [18]).

We will formulate the underlying mathematical problem of computing cluster net-
works and present a solution approach from commutative algebra. Given two states,
represented as vectors s, t ∈ Z

n+ (these could be an initial and a final state of a bio-
chemical reaction) and a set of potential transitions M = U ∪ D ⊆ Z

n+ × Z
n+, where

a transition u → v is encoded as the vector (u, v). The set U represents undirected
transitions (that is, with every (u, v) ∈ U also (v, u) ∈ U ) whereas D represents
directed transitions. A transition u → v is applicable at a state a ∈ Z

n+ if a ≥ u. In
this case a is transitioned to a − u + v ∈ Z

n+. We say that s ∈ Z
n+ is M-connected to

t ∈ Z
n+ (short: s →M t) if there exists a transition path from s to t (in Z

n+) using only
transitions from M . We can formulate the following questions:

Question 1. Given two states s, t ∈ Z
n+. Decide whether s →M t.

Question 2. Given two states s, t ∈ Z
n+ such that s →M t. Find all directed paths

from s to t in Z
n+ using only transitions in M .

For small instances, Question 1 and to some extent also Question 2 can be solved
using a purely enumerative approach. This approach is finite if we assume that M
is homogeneous with respect to some positive grading. This road was successfully
pursued in [9] to examine the permanganate/oxalic acid reaction. Unfortunately, this
approach fails for larger problem sizes due to the vast amount of possibilities that have
to be enumerated as a consequence of the combinatorial explosion. The situation is
especially challenging, as due to reversible reactions a large number of reaction paths
are similar and thus block the view onto structurally different networks.

In this article, we provide an algorithmic solution to the following two problems.
The first problem is the identification of equivalence classes (or clusters) of states in
Z

n+ induced by the reversible reactions U , that is, given u, v ∈ Z
n+, decide whether

u ↔U v. The second problem is the construction of the graph of all clusters reachable
from a given cluster. This cluster graph is the compressed reachability graph starting
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Fig. 1 Cluster graph for permanganate/oxalic acid reaction. There is a unique reaction connecting cluster
0 to cluster 1, showing that it is essential in any decomposition

at s ∈ Z
n+ and using only transitions from M , where equivalent states with respect to

U are contracted.
We will use techniques from computer algebra in order to transform the problems

at hand into algebraic ones and then, using Gröbner bases, provide two algorithms
that solve these problems. We will then propose a solution to Question 1 and Ques-
tion 2 using the aforementioned cluster approach. The cluster graph that arises from
contracting the state graph is usually considerably smaller and both questions can be
decided on the cluster graph using traditional graph theoretic methods, thus enabling
the successful processing of significantly larger instances. In particular, transitions
connecting two clusters are of major importance for any decomposition. They can be
easily identified within the cluster graph. Thus, being able to compute cluster graphs,
one may study more complex reactions whose symmetries and equivalent paths block
the view onto essential parts of the decomposition, see Fig. 1.

The outline of the article is as follows. As a motivation, we provide an introduc-
tion to the network reconstruction problem from a chemical point of view in Sect. 2.
We will introduce the necessary notation and establish the link to our mathematical
approach using directed graphs and commutative algebra. In Sect. 3 the necessary
preliminaries and definitions from a mathematical point of view are formulated and
basic results are established. We will then derive the described algorithms in Sect. 4
and provide computational results in Sect. 5. Finally, we conclude with some remarks
in Sect. 6.

The notation we use is standard (cf. [5,14]). These books also provide excellent
introductions to commutative computer algebra.

2 Motivation from chemistry

The decomposition of an overall chemical reaction into elementary reaction steps
is one of the fundamental questions in chemistry, since the network of elementary
reactions encodes the dynamics of the chemical system and hence allows an ana-
lytical examination. We call a reaction elementary if at most two species react. For
example, 2H2O → 2H2 + O2 is an elementary reaction, but the reverse reaction
2H2 + O2 → 2H2O is not, as three (not necessarily different) species react.

The decomposition problem can be solved via several steps. We demonstrate them
using the well-known permanganate/oxalic acid reaction

2MnO−
4 + 6H+ + 5H2C2O4 → 2Mn 2+ + 8H2O + 10CO2
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that has been studied since 1866 [8] and that has been studied by several groups (see
e.g., [1,2,6,13,17,19,20]). As a first step, we have to choose a set of possible inter-
mediate species that can be used to explain the overall reaction. For example, the
following 19 species are a commonly accepted set [13]:

H2C2O4 HC2O−
4 H+ C2O2−

4
Mn2+ MnC2O4 MnO−

4 MnO2
Mn3+ CO2 H2O [MnO2, H2C2O4]
CO−

2 [Mn(C2O4)]+ [Mn(C2O4)2]− [MnC2O4, MnO−
4 , H+]

[MnC2O2+
4 , MnO−

3 ]+ [MnC2O2+
4 , MnO−

3 , H+]2+ [H+, MnO2, H2C2O4]

Now, all possible elementary reactions among the postulated species can be com-
puted. For this, note that any chemical state can be represented by a vector s ∈ Z

n+,
where si counts how many times species i is present in the state. Moreover, a chemical
reaction can be encoded as an integer vector d = (d′, d′′) ∈ Z

n+ × Z
n+. In particular,

in component d ′
i we specify how many units of species i react and in component d′′

i
we specify how many units of species i are created. In our example below, we will
assume for the elementary reactions that no species appears both as reactant and as
product, that is, supp(d′) ∩ supp(d′′) = ∅. Clearly, if we drop this condition we can
also model reactions that need some catalyst to be started. Then the catalyst would
simply be put on both sides of the reaction in equal amounts.

As any chemical reaction must fulfill a balance of mass and charge, −d′ + d′′ is a
solution of a certain linear system of equations Az = 0 with A ∈ Z

m×n and z ∈ Z
n .

For our example, we obtain

A=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 2 2 2 1
2 2 0 2 0 2 0 0 0 1 0 2 1 2 4 2 2 2 2
2 1 1 0 0 0 0 0 0 0 2 2 0 0 0 1 0 1 3
4 4 0 4 0 4 4 2 0 2 1 6 2 4 8 8 7 7 6
0 1 −1 2 −2 0 1 0 −3 0 0 0 1 −1 1 0 −1 −2 −1

⎞
⎟⎟⎟⎟⎠

,

(2.1)
where the first four rows correspond to the mass balance equations of Mn, C, O, and
H, respectively. The last row encodes balance of charge. The 19 columns correspond
to the 19 postulated species. Thus, by construction, the first m − 1 rows of this matrix
A are always nonnegative and the last row may contain negative entries. The per-
manganate/oxalic acid reaction is encoded in the (negative and positive parts of the)
vector

−d′ + d′′ = ( −5 0 −6 0 2 0 −2 0 0 10 8 0 0 0 0 0 0 0 0
)
.

The set of elementary reactions that we are looking for is now characterized by all
integer vectors −d′ + d′′ ∈ ker(A) with supp(d′) ∩ supp(d′′) = ∅ and ‖d′‖1 ≤ 2. In

our example, they can be computed via
(19

2

) + (19
1

) + (19
1

) = 209 linear Diophantine
systems. In total, they have 1, 022 solutions.

Finally, these 1, 022 reactions can be used to decompose the overall reaction into
elementary steps. In particular, we are interested in all such possible reaction net-
works in order to find a network that explains the observations from experiments
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most consistently. From a computational point of view, this final decomposition step
is by far the most challenging. For example, it was shown in [9] that the overall
permanganate/oxalic acid reaction cannot be decomposed at all using the 1, 022 ele-
mentary reactions only. Thus, the 19 species do not suffice in order to explain this
overall reaction. A solution was given by including a suitable additional species such
as H2O2. Unfortunately, using this additional species and the resulting additional
elementary reactions, the reaction network of the overall reaction contains a huge
number of paths from the initial state 2MnO−

4 + 6H+ + 5H2C2O4 to the final state
2Mn 2+ + 8H2O + 10CO2. Many of these paths correspond to identical or essentially
identical reaction networks. In order to identify important reactions within the net-
work, we can cluster states together that are connected via a sequence of reversible
reactions. Note that we may also cluster according to strongly connected components
of states but clustering according to reversible reactions preserves more information of
the original state network. In doing so, a large amount of the combinatorial explosion
is removed. The resulting coarser network for the example at hand is given in Fig. 1.
This cluster network exhibits important elementary reactions needed to explain the
overall reaction: For our example it shows that, given the postulated species, at most
three essentially different reaction networks exist; some of which might still turn out
to be impossible due to chemical restrictions. Moreover, there is a unique reaction,
H2C2O4 + MnO−

4 → CO−
2 + MnO2 + 2H2O2 + CO2, connecting cluster 0 to cluster

1, showing that this reaction must occur in any decomposition of the overall chemical
reaction.

3 The cluster graph framework

In this section, we want to introduce the necessary notions and definitions. We will
also present a few fundamental results that we will use in the following exposition.
The objects of our interest will be directed graphs and in particular their connectivity
structure.

In the following, we will call the elements in Z
n+ states. Let U ⊆ Z

n+×Z
n+ be a set of

reversible (undirected) transitions (that is, with every (r′, r′′) ∈ U also (r′′, r′) ∈ U ),
let D ⊆ Z

n+ × Z
n+ be a set of irreversible (directed) transitions (that is, for every

(r′, r′′) ∈ D we have (r′′, r′) ∈ D), and let M = U ∪ D be the set of transitions.
If s ∈ Z

n+ is a state and if (r′, r′′) ∈ M , then we can transition from state s to state
s − r′ + r′′ if s ≥ r′. Note that if the reversible transition (r′, r′′) ∈ U is applicable at
s, then (r′′, r′) ∈ U is applicable at s − r′ + r′′ leading us back to the original state s.
Using states and transitions, we construct the infinite graph �M with node set Z

n+ and
with an arc from a ∈ Z

n+ to b ∈ Z
n+ if and only if there is some (r′, r′′) ∈ M such that

r′ ≤ a and such that a − r′ + r′′ = b (that is, a can be directly transitioned into b by
some transition from M). Given two states s, t ∈ Z

n+, we say that s is M-connected to
t (short: s →M t) if there exists a directed path in �M from s to t.

We assume that M is homogeneous with respect to a positive (multi-) grading
deg : Z

n+ → Z
k+, that is, for all (r′, r′′) ∈ M we have deg(r′) = deg(r′′). This implies

that there are only finitely many states (in Z
n+) with a given fixed degree. In particular,
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there are only finitely many states reachable from any given state using the transitions
from M . We outline this in more detail in the following example.

Example 3.1 Consider the matrix A ∈ Z
5×19 given in (2.1) which is the mass/charge

balance matrix for the permanganate/oxalic acid reaction assuming 19 species.
Adding up the first 4 rows we obtain the vector:

a1 + a2 + a3 + a4

= (
8 7 1 6 1 7 5 3 1 3 3 11 3 7 13 13 11 12 12

)
,

which gives a desired positive grading. We can in fact also obtain a positive multi-
grading by adding the vector a1 + a2 + a3 + a4 sufficiently often to the rows of A:

A =

⎛
⎜⎜⎜⎜⎝

8 7 1 6 1 8 6 4 2 3 3 12 3 8 14 15 13 14 13
10 9 1 8 1 9 5 3 1 4 3 13 4 9 17 15 11 14 14
10 8 2 6 1 7 5 3 1 3 5 13 3 7 13 14 11 13 15
12 11 1 10 1 11 9 5 1 5 4 17 5 11 21 21 18 19 18
32 29 3 22 2 28 19 12 1 12 12 44 13 27 53 52 43 46 47

⎞
⎟⎟⎟⎟⎠

Then the multi-grading is obtained by setting deg(a) := Aa for a ∈ Z
n+.

Now let us partition the graph �M into clusters. This approach was initially sug-
gested in [9]. However, in contrast to partitioning via the strongly connected compo-
nents of �M as in [9], we partition via equivalence classes which group all states v that
can be reached from a specific u using only transitions from U . These equivalence
classes will be called clusters. Note, that u →U v if and only if v →U u. Thus the
relation u →U v is reflexive, symmetric, and transitive and therefore indeed an equiv-
alence relation on �M and we write u ↔U v. By C(u) ⊆ Z

n+ we denote the cluster of
u ∈ Z

n+ which is defined in the canonical way, i.e.,

C(u) := {v ∈ Z
n+ | u ↔U v}.

Now, the remaining set D ⊆ Z
n of irreversible transitions defines a directed graph

with the clusters (of Z
n+) as vertices and with a directed edge from cluster C(u) to

cluster C(v) if there exist two states x ∈ C(u) and y ∈ C(v) such that x can be tran-
sitioned into y via some d ∈ D. We denote this cluster graph by G(U, D). Be aware
that we indeed only add the arc (C(u), C(v)) if the cluster C(v) can be reached from
the cluster C(u) by a transition path of length 1.

In applications, we are usually given a finite set S of initial states. Note that in our
chemical setting, S typically contains only one state. More than one initial state could
occur if a set of experiments (i.e., pairs of initial and final states) have to be explained
(by networks). The nodes of the subgraph � = (S, M) of �M reachable from S in �M

are
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S =
{

s +
k∑

i=1

(−ui + vi ) | k ∈ N, s ∈ S, {(ui , vi ) | i ∈ [k]} ⊆ M

s.t. s +
l−1∑
i=1

(−ui + vi ) ≥ ul ∀l ∈ [k]
}

.

Herein, we use for convenience [k] := {1, . . . , k} for k ∈ Z+. As the arc set M ⊆ S×S
we obtain the set of those arcs in �M involving only nodes from S. The important dif-
ference to a classical directed graph is now that M and S are not given explicitly but
implicitly by a set of transitions/reactions M ⊆ Z

n+ × Z
n+ and a set of initial states

S ⊆ Z
n+. We call � = (S, M) the state graph of S and with respect to M . As S and

M might be already very large for small instances it is favorable to not completely
calculate S and M . In these cases, computing the much smaller cluster graph may still
give important information on the decomposition of the overall reaction.

As M is assumed to be homogeneous with respect to some (positive) grading, the
state graph of S w.r.t. M decomposes for s1, s2 with different degrees and thus one can
confine the analysis to sets S with elements of the same degree.

Having provided the considered setting, we set out to provide algorithmic solutions
to answer Questions 1 and 2 using cluster graphs. For this we show how to construct
the part G(U, D, S) of the cluster graph G(U, D) reachable from some C(s), s ∈ S.

4 Reconstructing cluster graphs

In this section we will use computer algebraic tools to reconstruct the cluster graph
reachable from states given in a finite set S via transitions in M = U ∪ D. The
positive grading implies that each cluster contains only finitely many states. More-
over, although the total cluster graph over Z

n+ has infinitely many clusters as vertices,
the positive grading implies that for any given state s ∈ Z

n+ only finitely many clusters
can be reached from the clusters C(s) with s ∈ S, within the cluster graph. In order to
reconstruct G(U, D, S), we have to solve the following two problems:

Main Problem 1. Given two states s, t ∈ Z
n+. Decide whether C(s) = C(t), i.e.,

whether s ↔U t.
Main Problem 2. Given s ∈ Z

n+. List all transitions d = (d′, d′′) ∈ D that are
applicable to at least one state sd ∈ C(s), that is, sd ≥ d′.
Main Problem 1 captures the problem of being able to decide whether two states

are in the same equivalence class whereas Main Problem 2 has to be solved in order
to identify clusters reachable from a given cluster. We will provide a solution for both
problems in form of computer algebraic algorithms. If the clusters are small enough
such that all states can be enumerated explicitly, Main Problem 1 can be solved by
simple enumeration. However, the sizes of the clusters may prohibit an explicit enu-
meration. Therefore an approach is sought that does not explicitly enumerate the cluster
elements. We will tackle this problem by transforming the set U into a binomial ideal.
We consider the polynomial ring K [X ] where K is an arbitrary field and X is the set
of the variables. Let JU be defined to be the ideal
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JU := 〈
xu − xv : (u, v) ∈ U

〉 ⊆ K [X ].

Then y ↔U z if and only if xy − xz ∈ JU as shown in the following theorem. This
theorem has been rediscovered many times—an early reference is [16]. For the sake
of completeness we include a proof below (cf. [10]).

Theorem 4.1 Let U ⊆ Z
n+ × Z

n+ and y, z ∈ Z
n+. Then y ↔U z if and only if

xy − xz ∈ JU .

Proof Let y, z ∈ Z
n+ such that y ↔U z. Thus, there exists a path from y to z in

Z
n+. More specifically, there exists a sequence of points (p1, p2, ..., pk) ⊆ Z

n+ where
p1 = y, pk = z, and pi − pi+1 = u′

i − u′′
i for some (u′

i , u′′
i ) ∈ U for i = 1, ..., k − 1.

Thus, there exists γ i ∈ Z
n+ such that pi = u′

i + γ i , and pi+1 = u′′
i + γ i for every

i = 1, ..., k − 1. Hence, xpi − xpi+1 = xγ i (xu′
i − xu′′

i ), and therefore,

xy − xz =
k−1∑
i=1

(xpi − xpi+1) =
k−1∑
i=1

xγ i (xu′
i − xu′′

i ) ∈ JU

as required.
Conversely, assume that xy −xz ∈ JU . Further, suppose for contradiction, y ↔U z.

As xy −xz ∈ JU , we may write xy −xz = ∑d
i=1 ci xγ i (xu′

i −xu′′
i ) where (u′

i , u′′
i ) ∈ U ,

ci ∈ K , and γ i ∈ Z
n+. Note that we allow (u′

i , u′′
i ) = (u′

j , u′′
j ) for i = j . Now, let

I := {i ∈ [d] | (γ i + u′′
i ) ↔U y}. Clearly, (γ i + u′′

i ) ∈ Z
n+ for all i ∈ [d].

Note that if (γ i + u′′
i ) ↔U y then (γ i + u′

i ) ↔U y since γ i + u′′
i ≥ u′′

i and

(γ i +u′′
i )+ (−u′′

i +u′
i ) = (γ i +u′

i ). Thus, the set of monomials consisting of xγ i xu′′
i

and xγ i xu′
i for all i ∈ I , which includes xy and not xz, is disjoint from the set of

monomials consisting of xγ i xu′′
i and xγ i xu′

i for all i ∈ I , which includes xz and not
xy. Let f (x) = ∑

i∈I ci xγ i (xu′′
i − xu′

i ) and let g(x) = −∑
i ∈I ci xγ i (xu′′

i − xu′
i ). It

is readily seen that the polynomials f (x) and g(x) have a disjoint set of monomials,
and therefore, f (x) = xy and g(x) = xz since xy − xz = f (x) − g(x). However, this
is impossible since f (1) = 0 and g(1) = 0 but 1y = 1 and 1z = 1. ��

Using Theorem 4.1 we can now solve Main Problem 1 as follows. Choose ≺ to be an
arbitrary term ordering, let G≺(JU ) be a Gröbner basis of JU with respect to ≺, and let
y, z ∈ Z

n+ be two states. Then y ↔U z if and only if xy −xz ∈ JU by Theorem 4.1. As
G≺(JU ) is a Gröbner basis, xy − xz ∈ JU if and only if NF≺(xy − xz, G) = 0, where
NF≺(.) is the normal form operator. Note that once the Gröbner basis G≺(JU ) of JU

has been calculated, the membership test NF≺(xy − xz, G) = 0 can be performed
easily.

As an immediate consequence of this construction, it follows that every cluster
cluster(ves) with s ∈ Z

n+ has a unique (≺-minimal) representative outside the leading
term ideal LT≺(JU ) which can be obtained by calculating the normal form. Slightly
abusing notation we denote this unique minimal element by C(s) := NF≺(xs, G).
Thus, the monomials outside of LT≺(JU ) are in one-to-one correspondence with
possible clusters in Z

n+. Consequently, the number of clusters reachable from C(s)
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is bounded by the number of monomials outside of LT≺(JU ) which have the same
(multi-) degree deg(s). These numbers, however, are encoded in the multi-graded
Hilbert-Poincaré series [14] of JU :

H(z) := H(z, JU ,≺, deg) :=
∑

α∈Z
n+:xα ∈LT≺(JU )

zdeg(α).

Note that this potentially infinite sum can always be written as a rational function
p(z)/q(z). Moreover, it does not depend on the actual term ordering ≺ chosen and it
can be computed from any Gröbner basis of JU rather efficiently. The coefficient in
front of zdeg(s) in the multi-variate Hilbert series expansion of p(z)/q(z) is exactly the
number of clusters of degree deg(s) ∈ Z

k . Thus, we can compute in advance an upper
bound on the number of clusters that can be reached from C(s) or that can reach C(s)
inside the cluster graph G(U, D).

Recall that for a directed transition (d′, d′′) ∈ D and a state z ∈ Z
n+ the transition

(d′, d′′) is applicable at z, if z ≥ d′. Thus, in order to solve Main Problem 2, we
need to decide whether a given directed transition (d′, d′′) ∈ Z

n+ × Z
n+ is applicable

at some state z ∈ C(y) given only some representative y of the cluster C(y). The
following theorem will be a main ingredient in order to solve this question. Recall
that for an ideal I ⊆ K [X ] and a vector m ∈ Z

n+ the colon ideal I : xm is defined as
I : xm := {p ∈ K [X ] | pxm ∈ I }.
Theorem 4.2 Let U ⊆ Z

n, d ∈ Z
n+, and y, z ∈ Z

n+ with y, z ≥ d. Moreover, let

V ⊆ Z
n such that JV = JU : xd. Then

y ↔U z ⇔ y − d ↔V z − d.

Proof This follows immediately using Theorem 4.1: Note that y ↔U z if and only if
xy − xz ∈ JU and similarly, y − d ↔V z − d if and only if xy−d − xz−d ∈ JV . Now
observe that xy−d − xz−d ∈ JV holds if and only if xy − xz ∈ JU , as JV = JU : xd =〈
xu − xv : u + d ↔U v + d

〉
.

Observe that for the backward implication of the equivalence, we employ the con-
dition y, z ≥ d, that is, xy−d − xz−d is indeed a polynomial in x. ��

Note that Theorem 4.2 shows that V connects any two points y, z in C(y) with
y, z ≥ d via a sequence of points in C(y) whose coordinates are also at least as big
as d. Such a path can be constructed by shifting the relation y − d ↔V z − d by d
as shown in Fig. 2. Moreover, by computing the normal form of y with respect to a
≺-Gröbner basis of JV where ≺ is a term ordering that maximizes the j-th component,
we can decide for a given d := d + d j e j whether there is some z ∈ C(y) with z ≥ d.
This is summarized in Algorithm 1.

We will now formulate Algorithm 2 that solves Main Problem 2 by iteratively
calling the coordinate increment algorithm (Algorithm 1). Algorithm 2 constructs an
element z ∈ C(y) with z ≥ d for a given y ∈ Z

n+ and d ∈ Z
n+ if such an element z

exists.
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Fig. 2 Shift relative to d

Input : Let U ⊆ Z
n , y, d ∈ Z

n+. Moreover, let S = supp(d), j ∈ S, and d := d − d j e j .
Output: z if z ∈ C(y) with z j ≥ d j exists, False otherwise.

set d := d − d j e j ;1

compute V ∈ Z
n such that2

JV = JU : xd = 〈
xu − xv : u + d ↔U v + d

〉 ;3
compute a Gröbner basis G of JV w.r.t. a term ordering ≺ that maximizes the j-th component;4

xz := NF≺(xy−d, G);5
if z j ≥ d j then6

z := z + d ∈ C(y);7
return z;8
else9

return False;10
end11

end12

Algorithm 1: Coordinate increment algorithm (CI)

Input : Let U, y, d be as in Theorem 4.3.
Output: z ∈ C(y) with z ≥ d if exists, False otherwise.

set S := supp(d);1
let {s1, . . . , sk } := S be an enumeration of S with k ≤ n;2

set d(1) := ds1 es1 ;3

set z(0) := y;4
for i ∈ [k] do5

set z(i) := CI(U, z(i−1), d(i), si ); (with CI from Theorem 4.3)6

if z(i) == False then7
return False;8
STOP;9

end10
if i < k then11

set d(i+1) := d(i) + dsi+1 esi+1 ;12

end13

end14

return z(k);15

Algorithm 2: Cluster connectivity test (CCT)
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Theorem 4.3 Let U ⊆ Z
n, y ∈ Z

n+, and d ∈ Z
n. Then Algorithm 2 decides whether

there exists z ∈ C(y) with z ≥ d and if the answer is affirmative it returns z.

Proof Let S, d(i), z(i), and k be as calculated by Algorithm 2. Suppose that z ∈ C(y)

with z ≥ d exists. We show that at the end of iteration i we obtain an element z(i) ∈ C(y)

with z(i)
s j ≥ ds j for all j ∈ [i]. Then for i = k = | supp(d)| the assertion follows as

z(k)
s j ≥ ds j for all j ∈ [k] and hence z(k) ≥ d.

We have to verify that in iteration i we can apply Algorithm 1 to the input U , z(i−1),
d(i), and si . At the start of iteration i we have z(i−1) ≥ d(i) − dsi esi . In the case of
i = 1 this is clear as d(1) − ds1 es1 = 0 and z(0) = y ≥ 0. For i > 1 this follows
by induction as z(i−1) := CI(U, z(i−2), d(i−1), si−1) with z(i−1) ≥ d(i−1) if such an
element z(i−1) ∈ C(y) exists. With d(i−1) = d(i) − dsi esi the claim follows. Thus we
can indeed apply Algorithm 1 to the input U , z(i−1), d(i), si and it returns z(i) with
z(i) ≥ d(i) if such an element z(i) ∈ C(y) exists, so that the loop is well defined and we
obtain z(i) ≥ d(i) at the end of each iteration. Let i ∈ [k] and observe that d(i)

s j ≥ ds j

for all j ∈ [i] so that, together with z(i) ≥ d(i), it follows z(i)
s j ≥ ds j for all j ∈ [i].

In case there is no such z ∈ C(y) with z ≥ d, there exists i ∈ [k] such that
CI(U, z(i−1), d(i), si ) returns ‘False’ and the algorithm stops. This finishes the proof.

��
Remark 4.4 It should be noted that in our chemical setting we have ||d′||1 ≤ 2 for
any elementary reaction (d′, d′′). Therefore, we only have to compute generators for
JU : (xi x j ) = (JU : xi ) : x j . This square number of Gröbner bases can in fact be
pre-computed before we start construction of the cluster graph G(U, D, S).

Computation of I : xi for a positively graded binomial ideal I can be done without
any additional indeterminate. (Thus, the computation is much faster.) It suffices to
compute any DegRevLex-Gröbner basis of I with an ordering such that xi is minimal,
and then dividing any binomial by xi for which this is possible [11]. Note that the
resulting set of binomials is still a DegRevLex-Gröbner basis of I : xi .

Finally, in order to compute JU : (xi x j ) = (JU : xi ) : x j , we first compute a
generating set of JU : xi as explained in the previous paragraph. As this generating
set is a Gröbner basis of JU : xi , we might even use a Gröbner walk [4] from there to
compute the desired DegRevLex-Gröbner basis of JU : xi with x j smallest.

Example 4.5 With the help of Algorithm 2 we may decide for any given (representative
state) y ∈ Z

n+ whether a given directed transition (d′, d′′) ∈ D is applicable at some
state z ∈ C(y). Consequently, cluster C(y) is connected to cluster C(z−d′ +d′′) in the
cluster graph G(U, D). However, as the following simple example shows, there may
be more than one cluster in G(U, D) that can be reached from C(y) via the transition
(d′, d′′) ∈ D. The simple reason for this is that the state z ∈ C(y) with z ≥ d′ is not
unique and a different state z′ ∈ C(y) with z′ ≥ d′ could be transitioned to a state
z′ − d′ + d′′ lying in a different cluster than z − d′ + d′′, see Fig. 3.

Let z = (1, 0, 1), z′ = (0, 1, 1), u′ = (1, 0, 1), u′′ = (0, 1, 1), d′ =
(0, 0, 1), d′′ = (1, 0, 0), and set U = {(u′, u′′)} and D = {(d′, d′′)}. By con-
struction, z ↔U z′ and z, z′ ≥ d′, that is, the transition (d′, d′′) ∈ D can be
applied to both z and z′. The transitioned states are z − d′ + d′′ = (2, 0, 0) and
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Fig. 3 Two different clusters
can be reached via the same
transition

z − d′ + d′′ = (1, 1, 0). These two states do not belong to the same cluster with
respect to U , since x2

1 − x1x2 ∈ JU = 〈x1x3 − x2x3〉, since every polynomial in JU

is a multiple of x3.

Lemma 4.6 Let y ∈ Z
n+ be a state, let (d′, d′′) ∈ D ⊆ Z

n+×Z
n+ and let U ⊆ Z

n+×Z
n+

be the set of reversible transitions. Moreover, assume that JU : xd′ = JU . Then for
any z, z′ ∈ C(y) with z, z′ ≥ d′, the (transitioned) states z − d′ + d′′ and z′ − d′ + d′′
belong to the same cluster with respect to U.

Proof As z ↔U z′, we get xz − xz′ ∈ JU by Theorem 4.1. Moreover, as z − d′ ≥ 0
and z′ − d′ ≥ 0, we have that xz−d′ − xz′−d′ ∈ JU : xd′

, by definition of JU : xd′
.

Thus, we also have xz−d′+d′′ − xz′−d′+d′′ = xd′′ (
xz−d′ − xz′−d′) ∈ JU : xd′

. Since

JU : xd′ = JU by assumption, we conclude by Theorem 4.1 that the states z −d′ +d′′
and z′ − d′ + d′′ belong to the same cluster with respect to U . ��
Remark 4.7 Note that Lemma 4.6 implies that for every given state y ∈ Z

n+, there is
at most one cluster in G(U, D) that is reachable from C(y) via any given (d′, d′′) ∈ D.

Now we are finally ready to state an algorithm that reconstructs the cluster graph
G(U, D, S) when JU and D satisfy certain conditions.

Lemma 4.8 Let s ∈ Z
n+ be an initial state and M = U ∪ D ⊆ Z

n+ × Z
n+ be as

above. Moreover, assume that JU : xd′ = JU for all (d′, d′′) ∈ D. Then Algorithm 3
reconstructs the induced cluster graph G(U, D, S).
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Proof The list N contains all the nodes that have been discovered but not visited
yet. The list V contains all visited nodes and E is the edge set that we construct
successively. Clearly Algorithm 3 is finite if the cluster graph G(U, D, S) is finite:
In each iteration of the loop starting in 5 we remove one element from N and we
only add nodes to N (lines 15/16) if the constructed node is new. It remains to show
that the algorithm reconstructs the cluster graph G(U, D, S). We initialize N with
NF(s, GU ) and we successively process all the nodes in N . For each node u ∈ N
we have to decide whether a directed transition (d′, d′′) can lead to a new adjacent
cluster. (By Lemma 4.6, there exists at most one such cluster due to our assumption
JU : xd′ = JU .) Therefore we employ Algorithm 2 to construct v := CCT(U, u, d′) if
such a v exists. In a next step we verify that the transitioned state v − d′ + d′′ ∈ C(u).
In this case we found a transition (d′, d′′) leading to an adjacent cluster and we add the
corresponding edge (u, w) to E . Finally we test if the canonical cluster representative
w := NF(v − d′ + d′′, GU ) ∈ V , i.e., we discovered a new cluster and add w to V in
this case. ��

Input : Let U, D, s be as in Lemma 4.8.
Output: Cluster graph G(U, D, S).

let GU be a Gröbner basis of JU w.r.t. to an arbitrarily chosen term ordering;1
set N := {NF(s, GU )};2
set V := ∅;3
set E := ∅;4
while N = ∅ do5

choose u ∈ N ;6
set N := N \ {u};7
set V := V ∪ {u};8
for (d′, d′′) ∈ D do9

set v := CCT(U, u, d′);10
if v = False then11

if NF((v − d′ + d′′) − u, GU ) = 0 then12
set w := NF(v − d′ + d′′, GU );13
set E := E ∪ {(u, w)};14
if w ∈ V then15

set N := N ∪ {w};16
set V := V ∪ {w};17

end18

end19

end20

end21
return (V, E);22

end23

Algorithm 3: Cluster graph reconstruction (CGR)

We will now explain how the cluster approach can be used to answer Question 1
and Question 2 mentioned in Sect. 1. Let s ∈ Z

n+ and M = U ∪ D ⊆ Z
n+ × Z

n+
be as above and let G(U, D, S) be the cluster graph that, under the assumption that
JU : xd′ = JU for all (d′, d′′) ∈ D, can be computed by Algorithm 3.
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Remark 4.9 (Answer to Question 1) We can answer Question 1, i.e., given two states
s, t ∈ Z

n+, decide whether s →M t. It suffices to calculate, e.g., the shortest path from
C(s) to C(t) in G(U, D, S). If such a path exists, then we have s →M t. Otherwise
such a path does not exist.

As the cluster graph is usually considerably smaller than the state graph, this test can
be performed even for larger reaction networks. If one is interested in a specific path
from s to t which, e.g., minimizes the energy needed for the reaction, we can attach
the required energy as weights to the edges and then use the shortest path algorithm
to compute the desired path. In order to answer Question 2, we have to define exactly
when we consider two paths essentially different:

Definition 4.10 Let s, t ∈ Z
n+ be two states such that s →M t. Further let

(vi )i∈[n], (wi )i∈[m] ⊆ Z
n+ be two (directed) paths in the state graph �M with

v1 = w1 = s and vn = wm = t. Then (vi )i∈[n], (wi )i∈[m] are essentially differ-
ent if the induced paths in G(U, D, S) are different.

With the definition as above, Question 2 can be answered as follows.

Remark 4.11 (Answer to Question 2) Let s, t ∈ Z
n+ be two states such that s →M t.

Enumerate all paths from C(s) to C(t) in G(U, D, S) by performing a depth-first search
on G(U, D, S).

Usually, enumerating all paths connecting two nodes in a graph is rather expensive
(actually already path counting is #P-complete). The reduction to the cluster graph
G(U, D, S) reduces the problem size though, so that realistic networks can be tackled.

5 Computational results

We will now provide some computational results for Algorithm 3. All computations
were performed in CoCoA 4.7 (see [3]) on a machine with a dual core x86_64 processor
with 2 GHz and 2 GB of main memory. For the permanganate/oxalic acid reaction and
the corresponding mass/charge balance equations (2.1) we obtain 1, 022 elementary
reactions M = U ∪ D. We had to construct 19 · 18 + 1 = 343 Gröbner bases for the
cluster graph reconstruction. All the necessary Gröbner bases computations for this
system were performed in less than 2 min (1 min 53 s) and the remaining time for
the actual cluster graph reconstruction can be neglected (<1 s) as only normal form
computations were performed. The Gröbner basis of JU contained 136 elements and
the Gröbner bases of the corresponding ideals JU : xi were of similar size.

As shown in [9], 16 species do suffice to explain the reaction process. We performed
the same computations for the reduced matrix and obtained both, significantly reduced
computational time and size of the Gröbner bases. In this case the 16 · 15 + 1 = 241
Gröbner bases computations were performed in less than 14 s and the Gröbner basis
of JU contained 29 elements. The Gröbner bases of the ideals JU : xi were again of
similar size. Again, the time for computing the cluster graph, see Fig. 1, is neglectable
(<1 s).
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We were also able to compute a Gröbner basis of JU for a large reaction network
from an air pollution model involving 80 species and 13,556 reversible elementary
reactions. The Gröbner basis of JU could be computed in less than 5 min (4 min 48 s)
and contained 5, 740 elements.

6 Concluding remarks

We have given algorithms to construct (under certain conditions on JU and D) the
induced subgraph G(U, D, S) of G(U, D) that is reachable from a given finite set S of
states. From G(U, D, S) we can extract useful information about the decomposition
of the overall reaction. For example, transitions can be identified that have to occur
in any decomposition. Our computations for the permanganate/oxalic acid reaction
and the air pollution problem indicate that our algorithms are applicable in practice
even for real-world size problems with a large number of species. Therefore, we are
confident that our cluster network approach will turn out very useful in the study of
more complex biochemical reaction systems.

From a mathematical point of few, some open questions remain:

• Find algorithmically all clusters that can be reached from cluster C(y) via a given
transition (d′, d′′). This is an essential step in order to reconstruct the cluster
(sub)graph G(U, D, S) in the general case, that is, without our assumptions on JU

and D.
• The reachability problem “s →M t?” is generally hard to decide. In the chemical

setting above, the situation may be easier. Thus, is it possible to decide “s →M t?”
in polynomial time for elementary chemical reactions?

• Another way to cluster states in Z
n+ is via strongly connected components in the

state graph �M . Again, this clustering defines an equivalence relation. This relation
can be encoded into a certain binomial ideal JM as before. This ideal, however,
is given only implicitly via M = U ∪ D and so the question arises how we can
construct generators of JM .
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